Calculus A Product, Quotient and Chain Rules Review

Name:

1. Differentiate the function $y = \frac{x^2 + 4x + 3}{\sqrt{x}}$.

2. Find the equation of the tangent line to $f(x) = x + \sqrt{x}$ at (1,2)

3. Suppose that f(2)=3, f'(2)=2, g(2)=-1, and g'(2)=-2. Find the following values.

a.
$$\frac{d}{dx}[f(x)g(x)]$$
 at $x=2$

b.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right]$$
 at $x = 2$

c.
$$\frac{d}{dx} \left[\frac{g(x)}{f(x)} \right]$$
 at $x = 2$

4. If *f* is a differentiable function, find an expression for the derivative of each of the following function.

a.
$$y = x^2 f(x)$$

b.
$$y = \frac{f(x)}{x^2}$$

5. Find the derivative of the following functions

a.
$$y = (x^3 - 1)^{100}$$

b.
$$y = \cot^2(\sin \theta)$$

c.
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$

d.
$$g(t) = \left(\frac{t-2}{2t+1}\right)^9$$

e.
$$y = \sin(\cos(\tan x))$$

- 6. State the derivative of h(x) = f(g(x)).
- 7. A table of values for f, g, f', and g' is given below. Use the information in #6 above to evaluate the following derivatives.

x	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

- a. If h(x) = f(g(x)), find h'(1)
- b. If H(x) = g(f(x)), find H'(1)
- 8. If f and g are the functions whose graphs are shown below, let u(x) = f(g(x)), v(x) = g(f(x)), and w(x) = g(g(x)). Find each derivative, if it exists. If it does not exist, explain why. Remember that the derivative of a function at a point is the slope of the tangent to the curve there.

- a. u'(1)
- b. v'(1)
- c. w'(1)

9. In the graph below, label f(x) and f'(x) appropriately.

10. Give at least three specific points of evidence for your decision in 9 above.

a.

b.

c.